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ABSTRACT 
The purpose of this paper is to show that at “redundant poles” the linearindependence of two basic 
solutions used for evaluating usualS-matrix for a general potential    
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1. INTRODUCTION 
 
Several authors [1-6],  applying suitable functional transformations to a second order 
differential equation, have constructed solvable potentials for the non-relativistic Schrödinger 
equation, the relativistic Klein-Gordon and Dirac equations. The potentials were obtained from 
hypergeometric, confluent hypergeometric and Bessel differential equations. A potential of the 
type  
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    (1) 

was constructed by Sharma [7] by transforming the associated Legendre differential equation 
following the method used in our previous papers. This potential derives its importance from 
the fact that for particular values on n = 1 it gets reduced to the potential already derived [8]. 
Similarly for n = 1 and replacing αby  – α/2,  it takes the form of an Eckart [9] type of potential 
(with special value β = 1). 
 
 It is well-known that the poles of the s-matrix in the upper half plane of the complex 
momentum variable correspond to genuine bound states of the system; and a set of states 
must include these bound states before they constitute a complete set. It was shown [10] that 
in the case of an exponential potential for the s- wave, S – matrix, there exist poles that do not 
contribute to the completeness even though they appear in the same part of k- plane as the 
bound state poles. These poles have been referred to as “redundant poles” in the literature and 
their importance with regard to the concept of “shadow states” has been stressed by few 
authors [11]. In particular, theseauthors have depicted by specific examples that it is possible to 
have two phase-equivalent systems in which complete sets of states of one potential include 
only the scattering states, while for the other potential there is a bound state that must be 
included. Specific cases of exponential and Eckart potentials were reexamined [12]and it has 
been shown that “redundant” solutions for these potentials correspond to the vanishing of the 
Wronskian pointing to the breakdown of the linear independence of the starting wave-
functions employed in deriving the expression for the S- matrix. 
 
The object of this communication is to show that for the case of general potential (1), 
considered in this note also, the “redundant” poles correspond to the vanishing of the relevant 
Wronskian showing thereby that their linear independence breaks down at such poles. 
 
2. REGULAR SOLUTIONS AND THE S-MATRIX 
 
As only the regular solutions are acceptable for the discussion of the physical problems, the 

regular solution [13] for the potential (1) defined by the boundary condition (r) = 0 for r = 0  is 
written as 
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Thus the S-matrix will have the form 
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On further simplifying [13], equation (3) can be written as 
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Applying Legendre’s duplication formula [13], the S-matrix can be finally written in the 
following form 

 ink

ink
kS

    (5) 

 
The unitarity of S-matrix [14] can also be established from equation (5). 
 
Now the poles of theS-matrix obviously are given by such values of kwhich satisfy the relation 

nink , , being an integer 0    (6) 

 
 
 
From the regular solution (2), the Wronskian of 
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which are two linearly independent solutions (without considering other factors) is  
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given as [13]                
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Now it is easy to verify that the Wronskian vanishes for the values of kgiven by (6), showing 
thereby that the starting solutions (2) which are linearly independent, are not so at such values 
ofk. 
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